Square-root cancellation for sums of factorization functions over short intervals in function fields

نویسندگان

چکیده

We present new estimates for sums of the divisor function and other similar arithmetic functions in short intervals over fields. (When are long, one obtains a good estimate from Riemann hypothesis.) obtain an that approaches square-root cancellation as long characteristic finite field is relatively large. This done by geometric method, inspired work Hast Matei, where we calculate singular locus variety whose Fq-points control this sum. has applications to highly unbalanced moments L-functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sums of Twisted Gl(2) L-functions over Function Fields

Let K be a function field of odd characteristic, and let π (resp., η) be a cuspidal automorphic representation of GL2(AK ) (resp., GL1(AK )). Then we show that a weighted sum of the twists of L(s, π) by quadratic characters χD , ∑ D L(s, π ⊗ χD) a0(s, π, D) η(D) |D|, is a rational function and has a finite, nonabelian group of functional equations. A similar construction in the noncuspidal case...

متن کامل

Sums of Two Squares in Short Intervals in Polynomial Rings over Finite Fields

Landau’s theorem asserts that the asymptotic density of sums of two squares in the interval 1 ≤ n ≤ x is K/ √ log x, where K is the Landau-Ramanujan constant. It is an old problem in number theory whether the asymptotic density remains the same in intervals |n− x| ≤ x for a fixed and x→∞. This work resolves a function field analogue of this problem, in the limit of a large finite field. More pr...

متن کامل

Möbius function in short intervals for function fields

Article history: Received 29 January 2014 Received in revised form 2 February 2015 Accepted 3 February 2015 Available online xxxx Communicated by Igor Shparlinski MSC: 11T55 11T23 11N37

متن کامل

Mean Value of Hardy Sums over Short Intervals

The main purpose of this paper is to study the mean value properties of certain Hardy sums over short intervals by using the mean value theorems of the Dirichlet L-functions, and to give two interesting asymptotic formulae.

متن کامل

L-functions of Exponential Sums over Finite Fields

Let F q be the finite field of q elements with characteristic p and F q m its extension of degree m. Fix a nontrivial additive character ψ of F p. For any Laurent polynomial −1 n ], we form the exponential sum S * m (f) := The corresponding L-function L * (f, t) is defined by L * (f, t) := exp (∞ ∑ m=0 S * m (f) t m m). The corresponding L-function L(f, t) is defined as follows L(f, t) := exp (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2021

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2020-0060